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ABSTRACT 

Estimation lower bounds on the accuracy of radar measurement of the acceleration of a moving 

target are derived. These bounds are expressed in terms of the sensor parameters, such as: range 

(or Doppler) and angle accuracies, track time, data rate (PRF), and an a priori estimate of the 

direction of the target acceleration. Simple scaling laws that allow the reader to trade-off these 

parameters utilizing curves presented in this report are also given. 
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LOWER BOUNDS ON ACCELERATION 
ESTIMATION ACCURACY 

I.    INTRODUCTION 

To determine tracking sensor measurement accuracy requirements for determining, or de- 

tecting a change in target acceleration often requires numerous computer simulations for various 

sensor-target geometries, sensor measurement accuracies, data rate (PRF) and total track time. 

This exercise is generally very time-consuming and very inefficient in studying sensor parameter 

trade-offs for a sensor system design. Furthermore, numerical results obtained by this ap- 

proach are extremely sensitive to the particular tracking algorithm used in the simulation study. 

In this report, an analytical formula is derived for calculating lower bounds on accelera- 

tion measurement accuracy with given sensor-target geometry and sensor parameters such as: 

range (or Doppler) and angle measurement accuracies, data rate (PRF) and total track time. 

Given a system requirement on the acceleration accuracy, a set of sensor parameters can be 

determined by this formula such that the computed lower bound on acceleration measurement 

meets the requirement. These sensor parameters are often slightly optimistic. To show that 

these theoretical lower bounds can be achieved with the selected sensor parameters, an 

acceleration estimation algorithm will have to be developed and simulated with these parameters. 

However, previous work [1] has shown that, for small measurement errors, the lower bounds 

can be achieved. With no specific system requirements on the acceleration measurement given 

in this report, families of lower bounds will be generated for various values of sensor 

parameters. Some interesting formulas and scaling laws will also be given for quick calculations 

needed in sensor trade-off studies. 

This report is organized as follows: In the next section, the analytical formulas for calcu- 

lating lower bounds on acceleration estimation accuracy are derived. Numerical examples are 

given in Section DL Interpretation of these results will also be presented. Finally, a brief 

summary will be given in Section IV. 



II.   ACCELERATION ESTIMATION LOWER BOUNDS 

In this section, we will determine lower bounds on the acceleration measurement accuracy 

for a radar with given range (or Doppler) and angle accuracy tracking an accelerating target for 

the case in which there is a given a priori estimate of the direction of the target acceleration. To 

derive these bounds, we will first assume that the direction of the target acceleration is given so 

that the acceleration estimation accuracies along the line-of-sight vector and the direction normal 

to it in the trajectory plane can be determined as a function of radar measurement parameters. 

These estimation accuracies are then used to derive acceleration measurement accuracy lower 

bounds for cases when the direction of the target acceleration is not known precisely. 

Consider an object moving with a velocity V with a look angle B with respect to an observ- 

er at a range R as depicted in Figure 1. An acceleration of magnitude, a, is applied to the object 

at the time of observation along a direction making an angle a with respect to the Une-of-sight 

vector R as shown in Figure 1. For simplicity, we assume V, a and R are coplanar, although 

the results are not sensitive to this assumption. 

\ 
Object 

Velocity,V   ^- 

Line-of-Sight, R 

Acceleration 
look Angle, a 

Velocity 4|    Acceleration, a 
Look Angle, B       a 

Figure 1.   Object and observer geometry. 



Using a polar coordinate system, the acceleration vector can be represented as: 

a  =  (R-Re2)r + (Re+2R0)e (1) 

where r is the unit vector along the Une-of-sight and 9 the unit vector normal to r in the ( R,a )- 
plane. R, 9, R and 0 are magnitudes of range and angle velocities and accelerations, respec- 

tively. 

Let aR and ag be the components of a along r and 9 as follows: 

• 2 
aR =  R - R 0 

(2) 
•• • 

ae = R e + 2 Re 

Taking the first order perturbation of (2) around ( aR, aQ ), we have 

AaR = AR - e2AR - 2ReAe 

(3) 
•• • 

Aae = 6 AR + RAG + 2eAR + 2RAe 

where R0 = VsinB.   For the case considered in this report, we have 

R » V   that is 0 « 1/sec. 

Therefore, the acceleration estimate along the r and 9 directions can be approximated by the 

following: 

o2  = a?. + (2Vsin6 )2o?    • 
^       R e 

(4) 

o2 = RV + (2VsinB/R)2o2 + (2VcosB)2a2 

ae e R e 

The relation of (4) to the sensor single hit measurement accuracy in range, angle and Doppler is 

derived in the Appendix. 



If the angle a is given, as shown in Figure 2, the overall acceleration accuracy can be 

computed by the following formula: 

2 o   = a 

^^ -i -1" 
2 

a 
a 
R 

cos a 
+ 

2 a 
a 
e 

sin a 
.L        J L-        ^ _ 

1 -1 

(5) 

la     ERROR ELLIPSE : 

2        2 2 2 
o cos a o sin a 

a a 

e 

"R e 

Figure 2. Acceleration estimation accuracy given acceleration direction. 

In this case, aa is generally close to the smaller of Ga  or o^, if these components are very dif- 

ferent in magnitude.   This formula was used in an earlier radar study to determine the radar 



2 2          2 2 .  2 
O     = o    cos a + O sin a 

a a 
R 

a 
e 

requirements.   On the other hand, if the angle a is completely unknown, then the total acceler- 

ation error is the root-sum-square of the errors along r and 0 projected onto a, that is 

(6) 

In this case, aa is generally close to the larger of aaR or G^. Figure 3 shows a plot of Ga = Ig 

in the aa - aafl plane for both Eq.(5) and Eq.(6). In most cases, the angle a is obtained by 

tracking the target before and after the acceleration change or by other a priori information. The 

accuracy of this angle estimate can be varied dramatically depending upon the assumptions 

made. In the following paragraph, we will derive a formula which takes this uncertainty into 

account parametrically. 

As illustrated in Figure 1, two components of the acceleration of an object can be mea- 
sured by a sensor, aR and ag. The knowledge of a can be modelled as a measurement obtained 

by the sensor with an accuracy aa. The Cramer Rao lower bound on any unbiased estimate of 

the acceleration magnitude, a, can be derived with the following measurement equations [2]: 

aR = acosa + nR 

ae  = a sina  + TIQ (7 ) 

a   = a + n a 

where nR, TIQ, and na are independent Gaussian random variables with zero means and standard 
deviations aa   aa and aa.   Following the steps in [2] and using Eq.(7), we have 

2 

22 2222 2 2 CJaR
<ya9+   a  aa(aaesina +aaRcosa) 

o; =      (8) 
2       2 2 2 2 2 

a  aa + ( aaflcos a + aaR sin a ) 
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Eq.(5) and Eq.(6). R e 



Combining Eqs. (8), (4) and (A.l) through (A.4) of the Appendix gives the overall acceleration 
estimation accuracy for a given a priori estimate of a with accuracy aa. Notice that Eqs. (5) 

and (6) can be derived from Eq. (8) for aa = 0° and oo0, respectively. 

In the following section, numerical examples will be given without a specific system design 

requirement. Most of the results were generated by an EXCEL spreadsheet program on a 

Macintosh computer. 



ffl. NUMERICAL EXAMPLES AND INTERPRETATION OF RESULTS 

The acceleration estimation accuracies along the r and 6 directions of Eq. (4) are shown in 

Figure 4 and Figure 5, respectively, for a wide range of values of radar range and angle mea- 

surement accuracies1 '2. An arbitrary sensor-target geometry indicated in both figures is chosen 

throughout this report. Every curve shown in both figures has the same general shape depicted 

in Figure 6. It consists of two important asymptotes; the horizontal asymptote represents the er- 

rors dominated by the range measurement accuracy and the sloped asymptote represents errors 

dominated by the angular measurement accuracy. The acceleration estimation accuracies at these 

limits are linearly proportional to the range or the angle measurement accuracy as follows: 

e. 
Lim a    =  a   = 

720 fcR 

Ee ^0    aR R      J   N(N2 - 1)(N2 - 4)      T2 
(9) 

e 
~1 

SR^U    V ~J  N(N2- 1)    T E
Li^o aa =  2Vsin B cr.   =  2Vsin B  / 773;  ^^ ( 10) 

Lim    a   = (2VsinB/R )a.  = (2Vsin6/R) / _L        (11 ) 
6 % R JN(N2-1)    T 

720 e 
e 

e        e N(N2- 1)(N2- 4)        T2 

1 The range of radar measurement accuracies appearing in all figures of this report is not intended to represent 

realistic sensor measurement capabilities; but is meant to present, mathematically, the entire picture of accelera- 

tion measurement accuracy as a function of radar measurement accuracies. 

2 Notice that oaR is more sensitive to OR than is 0^ for these parameters. 
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FigureS. Acceleration estimation accuracy along 0 as a function of radar range and angle 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a =30° 6 = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 6.   Acceleration estimation accuracies in both r and 0 directions.  Equations that 
compute the limiting values of these curves, intersection points of their asymptotes, 
and intersection point of these two curves are indicated. 

11 



The intersection point of these two asymptotes is also interesting and gives a rough estimate of 

the location at which the range and angle measurements are equally important.    It can be com- 

puted by the following formulas: 

For a • 
R 

For 

e     = 

eR   = 

60 

60 

R 

(N2 - 4) 2Vsin6 T 

2 
R e. 

(N2 - 4)        2Vsin6 T 

(13) 

(14) 

Furthermore, the following inequalities hold. 

if Y 
60 

(N2 - 4)      2Vsin6 T 
>   1, then (15) 

For a given e 

For a given e    , 
6 

lim    G > =       o 
efi --»0    a 

R 

Lim 
Eg-^O   "a 

9 

Lim    o .        Lim    o 
£,,^0    a       >     Ep-*0    a 

and 

(16) 

If the inequality in (15) reverses direction, so do the inequahties in (16).  This implies that these 

two curves will always intersect and will intersect at 

eR = R ee (17) 

for all given range measurement accuracies.  When the range and cross-range position accuracies 

are equal, the range and cross-range acceleration accuracies will be equal. 
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We now combine aaR and oa to determine aa. Figure 7 shows the overall acceleration 

estimation accuracy, Eq. (8), as a function of aa. Notice that the following formulas are very 

good approximations to Eqs. (5) and (6): 

(Max {a   (o ), a   (cr )}      for a unknown 
aR   e     ae  0 

(18) 
^ Min [a   (a ), a   (o )}      for a giVen 

to within factors of sina or cosa. Figure 8 shows a family of curves of aa with different values 

of range measurement accuracy, eR, for aa = 0°. Consider the curve for range measurement 

accuracy ER = 0.01 m. For angular measurement accuracy EQ larger than 10 |irad, oa decreases 

as eg decreases. The curve reaches a plateau between £0=1 and lO2[irad. This portion of 
the curve corresponds to the case where aaR < o^ and aa has reached its horizontal asymp- 

tote. As £0 decreases further, aa > oa and aa decreases again. Finally, for £0 < lO"6 |irad, 

o^ has reached its horizontal asymptote and oa will not decrease further. 

If we held aa constant, say O.Olg as shown by dotted tine in Figure 8, and trade-off range 

and angle measurement accuracy, we obtain a contour shown in Figure 9. Similarly, contours 
for different values of Ga can be obtained as was done in Figure 9. The asymptotes and knees 

of each contour can be approximated by equations indicated in Figure 6 and Eq.(8) for each giv- 
en value of oa and aa. Figures 10, 11 12 and 13 show a family of contours for different 

values of aa for aa at 0°, 1°, 10° and infinity, respectively. Notice that there are two plateaus as 

indicated in Figures 11 and 12: "Plateau R" is the region where aa varies very slowly as the 

range measurement accuracy changes for a couple order of magnitudes, and "Plateau A" 

corresponds to a similar region for the angle measurements. These contours are plotted for 
aa between 0.3 to O.OOlg. Contours with CTa values outside this range will have the same shape 

as the contour of aa = 0.3g and O.OOlg. This will be more apparent when oa is displayed by a 

3-D graph. The same set of Ga values are used to generate 3-D graphs as shown in Figures 

14, 15, 16 and 17. 

Figure 18 shows trade-off contours of range and angle measurement accuracy requirement 
for ca = 0.03g with the same set of aa.   In region A, we have extremely accurate range mea- 

surement where aa  « a^ and aa ~ aa  .   Eq.(10) should be used to determine the value of 

the angle measurement accuracy required for a given  aa.  aa is determined primarily by £0   In 

region B, we have more accurate angle measurements than those in region A but we still have 

13 



aaR < aa0- aa ~ (JaR an^ depends primarily on the range measurement accuracy. Eq.(9) 

should be used to determine the value of range measurement accuracy required for a given aa. 

A similar trade-off applies to regions C and D by interchanging R and 0 everywhere in the 

discussion for regions A and B, respectively. In region E, aaR ~ a^ and aa is not sensitive 

to the value of aa. The requirements on both range and cross-range position accuracies are 

equal. 

We now look at how aa scales with track time and data rate. Rewriting Eqs. (9) - (12), 

in terms of the PRF (1/T) and the total track time (NT) we see that the acceleration accuracy 

varies as T1/2, and (NT)-3/2 or (NT)-5/2 depending on the relative angle and range accuracy. 
Figure 19 shows a family of aa curves as a function of PRF for a total track time of 10 seconds 

with a fixed ER and different values of EQ. Notice that the spaces between curves are not 

uniform in some regions of EQ; this is due to the fact that in some regions, the range mea- 

surement dominates while in others the angle measurement dominates. Figure 20 shows a 
family of aa curves as a function of the total track time for a fixed PRF of 10 Hz. and fixed ER 

and different values of EQ. Notice that all curves eventually converge to the slope of -3/2 as the 

total track time increases. This is because the -3/2th power of the total track time converges to 

zero slower than the -5/2th power of NT. The transition points can be calculated from Eqs. (9) 

- (12). Similar curves like those shown in Figures 19 and 20 are given in Figures 21 and 22 
for aa = oo. Notice that in Figure 22 the slopes of all curves are -5/2. This is because for 

aa = oo only Eqs. (9) and (12) apply to these cases. 

To obtain results for Doppler-only cases, one can scale the results for range-only cases by 

a factor of [ 60/(N2 - 4)]1/2 / T. This follows from Eq. (A-2). A family of curves where range 

and Doppler measurements give same range acceleration accuracy are given in Figure 23. If 

both range and Doppler are available, the performance is determined primarily by the more 

accurate one. That is, above the curves in Figure 23, the range measurements are more useful 

while below the curves, the Doppler measurements are more useful. 

14 



R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° 6 = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 7.  Overall acceleration estimation accuracy as a function of angular measurement 
accuracy and a priori knowledge of acceleration direction, a. 

15 



R = 3000 km V= 7 km/sec. a = 0.2g 

a = 30° 6 = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 8.  Overall acceleration estimation accuracy as a function of angular measurement 
accuracy for various range measurement accuracies with Oa= 0°. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 
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Figure 10.  Contours of constant overall acceleration estimation accuracy as a function of radar 
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R = 3000 km V = 7 km/sec. a = 0.2 g 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° B = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 12.  Contours of constant overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with a = 10°. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° B = 60° PRF = 10 Hz.   NT = 2 sec 
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Figure 13.  Contours of constant overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with a = °°0. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° B = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 14.   3-D graph of overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with a   = 0°. 

22 



R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° B = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 15.   3-D graph of overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with ^   =1°. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° B = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 16.  3-D graph of overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with a  = 10°. 
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R = 3000 km V= 7 km/sec. a = 0.2g 

a = 30° 6 = 60° PRF = 10 Hz.    NT = 2 sec 
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Figure 17.   3-D graph of overall acceleration estimation accuracy as a function of radar 
angle and range measurement accuracies with a   = o°0. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° 6 = 60°        PRF = 10 Hz.     NT = 2 sec 
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Figure 18.  Contours of overall acceleration estimation accuracy of 0.03g as a function of radar 
angle and range measurement accuracies and various a  values. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° 6 = 60°        NT = 10 sec    ^   = 0.003 m 
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Figure 19.  Overall acceleration estimation accuracy as a function of PRE and angular measurement 
accuracy for a fixed range measurement accuracy and total track time with ca = 0°. 
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R = 3000 km V= 7 km/sec 

a =30° B = 60° 
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Figure 20.  Overall acceleration estimation accuracy as a function of total track time and angular 
measurement accuracy for a fixed range measurement accuracy and PRF with CJa= 0°. 
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R = 3000 km V = 7 km/sec. a = 0.2 g 

a = 30° 6 = 60°        NT = 10 sec      ER = 0.003 m 
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Figure 21.  Overall acceleration estimation accuracy as a function of PRE and angular measurement 
accuracy for a fixed range measurement accuracy and total track time with o   = «>. 
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R = 3000 km V= 7 km/sec 

ot = 30° B = 60° 

a = 0.2 g 

PRF = 10 Hz.   e   = 0.003 m 
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Figure 22.  Overall acceleration estimation accuracy as a function of total track time and angular 
measurement accuracy for a fixed range measurement accuracy and PRF with oa =oo 
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Figure 23.  Equivalent radar range and Doppler measurement accuracies for a given PRF and total 
track time. 
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IV.   SUMMARY 

An analytical formula for calculating lower bounds on acceleration measurement accuracy 

with given sensor-target geometry, sensor range (or Doppler) and angle measurement accura- 

cies, data rate (PRF) and total track time is presented. Numerical examples and interpretations of 

these results are also given. Some scaling rules and simple approximations are presented for 

quick calculations to obtain an idea of the trade-offs between several radar parameters. 

To summarize these major results: 

1. The accuracy of acceleration components in both range and angle are functions of the 

sensor range (or Doppler) and angle accuracy. These component accuracies have 

asymptotes proportional to the range or cross-range accuracy. Each component 

accuracy scales with (PRF)-1/2 and (track time)-3/2 or (track time)-5/2. 

2. The overall acceleration accuracy is limited by the more accurate component if the di- 

rection of the acceleration is known and by the less accurate component if the direction 

is not known. 

3. The combination of range and angle errors with errors in direction result in significant 

"thresholds" and "plateaus" in performance as a function of radar parameters. 
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APPENDIX 

VELOCITY AND ACCELERATION ESTIMATION ACCURACY OBTAINED 
BY POLYNOMIAL SMOOTHING 

Consider a sensor which measures range, angle and Doppler on a target with single hit ac- 
curacy ER, £0, and ER , respectively. N samples with sampling period T are obtained from a 

target; the velocity and acceleration estimation accuracies at the center of data interval after poly- 

nomial smoothing are [3]: 
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